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Abstract 

Background: Currently, Alzheimer’s disease (AD) cohort datasets are difficult to find and lack across‑cohort inter‑
operability, and the actual content of publicly available datasets often only becomes clear to third‑party researchers 
once data access has been granted. These aspects severely hinder the advancement of AD research through emerg‑
ing data‑driven approaches such as machine learning and artificial intelligence and bias current data‑driven findings 
towards the few commonly used, well‑explored AD cohorts. To achieve robust and generalizable results, validation 
across multiple datasets is crucial.

Methods: We accessed and systematically investigated the content of 20 major AD cohort datasets at the data level. 
Both, a medical professional and a data specialist, manually curated and semantically harmonized the acquired data‑
sets. Finally, we developed a platform that displays vital information about the available datasets.

Results: Here, we present ADataViewer, an interactive platform that facilitates the exploration of 20 cohort datasets 
with respect to longitudinal follow‑up, demographics, ethnoracial diversity, measured modalities, and statistical prop‑
erties of individual variables. It allows researchers to quickly identify AD cohorts that meet user‑specified requirements 
for discovery and validation studies regarding available variables, sample sizes, and longitudinal follow‑up. Addition‑
ally, we publish the underlying variable mapping catalog that harmonizes 1196 unique variables across the 20 cohorts 
and paves the way for interoperable AD datasets.

Conclusions: In conclusion, ADataViewer facilitates fast, robust data‑driven research by transparently displaying 
cohort dataset content and supporting researchers in selecting datasets that are suited for their envisioned study. The 
platform is available at https:// adata. scai. fraun hofer. de/.
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Background
Alzheimer’s disease (AD) and dementia research has pro-
gressed considerably thanks to the increased availability 
of patient-level cohort datasets [1]. Cohort data have, 
among others, laid the foundation to discover novel bio-
markers [2], investigate disease progression [3], and iden-
tify disease subtypes [4]. To ensure the robustness and 
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reproducibility of results achieved in such data-driven 
analyses, they must be externally validated in independ-
ent cohort datasets [5]. Working across multiple cohort 
datasets is, however, impeded by several profound chal-
lenges. The first challenge manifests in the access to fur-
ther validation cohort datasets, as third-party researchers 
have to go through time-intensive application processes 
that often span several weeks before they can actually 
start getting familiar with the acquired data. Secondly, 
once access is granted, the validation datasets have to be 
comparable to the original discovery dataset concerning 
their assessed variables [6]. This means that (1) a largely 
overlapping set of variables should have been measured 
in both cohorts and (2) these variables need to be har-
monized across the independent cohort datasets, which 
is rarely the case by default. Identifying and semantically 
harmonizing equivalent variables in distinct datasets is 
an arduous task given that datasets typically employ their 
own variable naming system [7]. While theoretical guide-
lines for AD data harmonization have been previously 
proposed [8], as of now and to the best of our knowledge, 
no comprehensive mapping catalog is available to the AD 
research community that would help to unify the variable 
names across existing cohorts.

Across-cohort interoperability, however, goes beyond 
the semantic layer as statistical distributions of equiva-
lent variables might differ among cohorts [9]. Our recent 
study revealed that such systematic statistical differences 
can bias results of data-driven analyses based on cohort 
data [10]. However, in practice, researchers only see the 
factual content of a shared dataset after data download 
occurred and data investigation started. At this stage, 
the realization of, for example, incompatible discovery 
and validation datasets can render the process of data 
access and exploration a waste of time as the lacking data 
interoperability would render the envisioned analysis 
infeasible.

Several funding bodies, for example, the Innovative 
Medicine Initiative (IMI) or the Alzheimer’s Disease 
Data Initiative (ADDI), have launched large projects to 
address data problems in the AD domain, for example, 
the European Medical Information Framework (EMIF) 
[11], ROADMAP [12], or the ADDI Workbench, and 
new calls were issued in this direction. In fact, both 
EMIF and ROADMAP have built information sources 
on cohort datasets that were assembled from the respec-
tive cohorts’ self-reported metadata [13, 14]. However, in 
a recent study, we observed that the information gained 
through such metadata-driven cohort assessments differs 
from the content that is factually shared with researchers 
after successful access applications [15].

In this work, we present ADataViewer, an interactive 
tool that enables the scientific community to explore 20 

AD cohort datasets, both from a semantic and statistical 
perspective. To establish semantic interoperability across 
these datasets, we created a variable mapping catalog 
that harmonizes 1196 unique variables encountered in 
the datasets, spanning nine data modalities. Leverag-
ing these semantically harmonized versions of the data-
sets, we developed tools and interfaces that facilitate the 
exploration of the cohort datasets with respect to longi-
tudinal follow-up, demographics, ethnoracial diversity, 
measured modalities, and individual variables. Finally, we 
present ADataViewers’ “StudyPicker,” a tool that assists 
researchers in identifying cohort datasets suited for their 
envisioned analysis.

Methods
Harmonizing variables across cohorts
Semantic harmonization of the datasets was achieved 
through meticulous manual curation. Two curators 
systematically investigated variable names, metadata 
describing the variable content, and the values stored 
in the respective data tables across each dataset to gain 
robust mappings between equivalent variables. We 
opted for a multidisciplinary curation team to combine 
the complementary strengths of a curator from a medi-
cal background with those of a second curator leveraging 
a data-driven perspective. In the first step, the cura-
tors categorized the variables of each dataset according 
to a set of modalities (e.g., magnetic resonance imag-
ing (MRI), demographics, and genotyping). To facilitate 
the curation process, mappings were proposed to the 
curators based on variable name similarity in modali-
ties where the number of features was abundant. For 
the majority of modalities, we mapped approximately 
between 10 to 30 variables, with the exception being 
the MRI modality which comprised more than 1000 
variables, as it contained a vast selection of brain region-
specific measures derived from the raw images (e.g., vol-
umes or thickness). No specific data model (e.g., FHIR 
or OMOP) was used. For more detailed curation guide-
lines, we refer to the Supplementary Material. Whenever 
possible, variables found in the investigated AD datasets 
were additionally mapped to ontologies that provided 
respective semantic context. Further details on the used 
ontologies and the process of mapping variable names to 
ontologies are described in the Supplementary Material.

Data access and data privacy
ADataViewer does not store or enable the download of 
any cohort data itself. All displayed plots and provided 
exploration tools are fully anonymized and no participant 
identifying information is disclosed nor stored in the 
underlying database, not even the original study internal 
patient identifiers. Shown statistical plots are solely based 
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on summary statistics or univariate analyses that cannot 
be linked to other variables or personal information. To 
facilitate access to the datasets, we provide links that lead 
researchers to the original data portals through which the 
respective cohorts are distributed.

Results
ADataViewer is an interactive platform that enables the 
detailed exploration of, at the time of publication, 20 
major cohort datasets from the AD domain. Its goal is to 
provide an overview across their content from a predom-
inantly data-driven perspective. Each section of ADa-
taViewer focuses on distinct aspects of the investigated 
datasets. The “Modality” section provides an overview of 
the data modalities collected in each cohort (e.g., mag-
netic resonance imaging (MRI), autopsy, and genotype 
data). The “Ethnicity” page displays the ethnoracial diver-
sity in each cohort study as well as aggregated plots over 
specific geographic regions. In the “Longitudinal” sec-
tion, the frequency and abundance of follow-up assess-
ments are presented both per cohort and variable. The 
“Biomarkers” section allows the visualization of variable 
distributions and their comparison across cohorts. The 
semantic mappings between cohort name spaces are cov-
ered in the “Mappings” section. Finally, the “StudyPicker” 
leverages on all of these sections to guide researchers to 
the cohort datasets which provide the best basis for their 
planned analyses.

Instead of relying solely on study protocols and 
reported metadata, we based all our investigations on 
the data that were factually shared by the respective data 
owners. To transparently mirror the state of the dataset to 
which researchers will gain access after successful appli-
cation, we refrained from any extensive data processing 
(e.g., transforming numerical ranges and value represen-
tations). As such, any inconsistencies in the datasets (e.g., 
extreme outliers) will be accordingly displayed in ADa-
taViewers’ tools and visualizations. Consequently, this 
allows researchers to comprehensively evaluate the data 
that will actually be available for analysis.

Accessed AD cohort datasets
To enable a comprehensive exploration of the avail-
able AD data, it was vital to identify, access, and curate 
as many cohort-level datasets as possible. Therefore, 
we systematically scanned data repositories and sci-
entific publications, leading to the identification of 24 
cohorts of which most claimed to follow the open sci-
ence paradigm and share their data with third-party 
researchers. After applying for access to the corre-
sponding data owners, we acquired 20 of those datasets 
over the course of 3 years (information on why the four 
remaining datasets were not accessed is provided in the 

Supplementary Material). These datasets originated 
from a heterogeneous pool of studies that followed a 
variety of different goals ranging from purely obser-
vational cohort studies over memory clinic data col-
lections to dedicated clinical trials. Concordantly, the 
employed participant recruitment procedures, inclu-
sion and exclusion criteria, and measured data modali-
ties varied among them. More information about the 
collected datasets, their content, and original study aim 
is given in Table 1; for further study-specific details, we 
refer to the original publications.

Semantic harmonization of the accessed cohort datasets
To build ADataViewer, we mapped 1196 unique terms 
across the investigated datasets corresponding to vari-
ables from nine different data modalities (Fig. 1). Table 2 
shows the total number of mapped terms per modal-
ity and cohort. Furthermore, to connect the variables of 
the cohort datasets to clearly defined semantic concepts, 
we additionally mapped them to standardized ontolo-
gies. In total, 241 concepts from seven distinct referen-
tial ontologies were used in this process (more details in 
the Supplements). All mappings can be explored through 
interactive visualizations and tables at https:// adata. scai. 
fraun hofer. de/ mappi ngs. The genotype and omics modal-
ities of datasets were not mapped as they are already pre-
cisely defined by genetic database identifiers (e.g., rsID’s 
or UniProt identifiers) and their corresponding refer-
ence genome. A prerequisite for mapping the variables 
was that they were at least present in two independent 
cohorts.

The StudyPicker: variable‑based selection of cohort 
datasets
The StudyPicker is a tool that supports researchers in 
finding datasets based on the requirements of their envi-
sioned analysis (https:// adata. scai. fraun hofer. de/ study_ 
picker). It takes a collection of variable names as input 
and ranks the cohorts in ADataViewer based on the avail-
ability of these specified variables (Fig.  4A). The gener-
ated ranking shows the availability of the variables and 
the number of participants per cohort for whom these 
variables have been assessed at the study baseline, as 
well as their longitudinal coverage (i.e., assessment fre-
quency and the number of participants assessed per visit) 
(Fig. 4B). Additionally, links are provided that guide inter-
ested researchers directly to the data access applications 
of the respective datasets. The StudyPicker is particularly 
helpful for hypothesis-driven research or validation stud-
ies in which the variables that are elementary to conduct 
the planned analysis are often known in advance.

https://adata.scai.fraunhofer.de/mappings
https://adata.scai.fraunhofer.de/mappings
https://adata.scai.fraunhofer.de/study_picker
https://adata.scai.fraunhofer.de/study_picker
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Detailed exploration of dataset content 
through interactive visualizations
Next to the semantic perspective, ADataViewer also allows 
for a detailed exploration of the integrated datasets based on 
descriptive statistics. Statistical distributions of numerical and 
categorical variables of interest can be visualized and com-
pared across the available cohorts (https:// adata. scai. fraun 
hofer. de/ bioma rkers). This functionality enables comparisons 
between individual diagnosis groups (i.e., cognitively unim-
paired (CU), mild cognitive impairment (MCI), AD) as well as 
the complete cohorts. Using these visualizations, researchers 

can investigate distributions and value representations 
encountered in the datasets and identify possible differences 
among them before starting their analysis.

A longitudinal view of the data can be generated in the 
“Longitudinal” section. Dedicated visualizations display the 
follow-up per cohort on a variable level (Fig. 2).

Meta‑analysis of cohort study content, assessed variables, 
and common modalities
Besides the exploration and comparison of specific 
cohorts, ADataViewer helps to get a comprehensive 

Table 1 AD cohorts available for exploration using ADataViewer

A complete overview about the collected data modalities can be found under https:// adata. scai. fraun hofer. de/ modal ity
a Follow-up assessments were planned for A4 but no according data was released at the time of this publication

Cohort Consortium Patients 
at 
baseline

Modalities Longitudinal 
(yes/no)

Study type

A4 [16] Anti‑Amyloid Treatment in Asymptomatic 
Alzheimer’s Disease

6945 7 Noa Clinical trial

ABVIB [17] Aging Brain: Vasculature, Ischemia, and 
Behavior

280 2 Yes Observational study

ADNI [18] The Alzheimer’s Disease Neuroimaging 
Initiative

2249 12 Yes Observational study

AIBL [19] The Australian Imaging, Biomarker & Life‑
style Flagship Study of Ageing

1378 9 Yes Observational study

ANMerge [20] AddNeuroMed 1703 10 Yes Observational study

ARWIBO [21] Alzheimer’s Disease Repository Without 
Borders

2617 10 Yes Observational study

DOD‑ADNI [22] Effects of TBI & PTSD on Alzheimer’s Dis‑
ease in Vietnam Vets

458 11 Yes Observational study

EDSD [23] The European DTI Study on Dementia 474 7 No Observational study

EMIF‑1000 [24] European Medical Information Framework 1199 10 No Meta‑cohort

EPAD V.IMI [25] European Prevention of Alzheimer’s 
Dementia

2096 9 Yes Observational study

I‑ADNI [26] The Italian Alzheimer’s Disease
Neuroimaging Initiative

262 5 No Observational study

JADNI [27] Japanese Alzheimer’s Disease Neuroimag‑
ing Initiative

567 9 Yes Observational study

NACC [28] The National Alzheimer’s Coordinating 
Center

40,948 11 Yes Memory clinic database

OASIS‑1 [29] and OASIS‑2 [30] Open Access Series of Imaging Studies 564 3 Yes Observational study

PREVENT‑AD [31] Pre‑symptomatic Evaluation of Experimen‑
tal or Novel Treatments for Alzheimer’s 
Disease

348 8 Yes Clinical trial

PharmaCog [32] Prediction of Cognitive Properties of New 
Drug Candidates for Neurodegenerative 
Diseases in Early Clinical Development

147 6 Yes Observational study

ROSMAP [33] The Religious Orders Study and Memory 
and Aging Project

3626 7 Yes Observational study

VASCULAR [34] The Vascular Contributors to Prodromal 
Alzheimer’s disease

250 8 No Non‑interventional cohort study

VITA [35] Vienna Transdanube Aging 606 5 Yes Observational study

WMH‑AD [36] White Matter Hyperintensities in Alzhei‑
mer’s Disease

90 5 No Observational study

https://adata.scai.fraunhofer.de/biomarkers
https://adata.scai.fraunhofer.de/biomarkers
https://adata.scai.fraunhofer.de/modality
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overview of the state of the data landscape formed by 
the underlying cohorts. Here, the modality map (https:// 
adata. scai. fraun hofer. de/ modal ity) displays how com-
monly specific data modalities were included in cohort 
studies and, simultaneously, highlights areas that currently 
remain underexplored. Along the same line, Fig. 3 shows 
an excerpt from an interactive visualization that depicts 
how many studies measured each individual variable. Fur-
thermore, the plots displaying the ethnoracial diversity 

encountered in each individual cohort, and across cohorts 
grouped by geographic location, reveal over- and under-
representation of ethnoracial groups in data-driven AD 
research. All of this information can be vital when design-
ing a novel cohort study aiming either for compatibility 
to other studies or at illuminating blind spots previously 
underrepresented in the AD data landscape.

Fig. 1 Mapping of demographic variables across the 20 cohorts. Red labels indicate variables mentioned in the metadata which consisted purely of 
missing data in the shared dataset. The corresponding plot for each modality as well as the underlying mapping tables for data harmonization are 
available at https:// adata. scai. fraun hofer. de/ mappi ngs.

https://adata.scai.fraunhofer.de/modality
https://adata.scai.fraunhofer.de/modality
https://adata.scai.fraunhofer.de/mappings
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Exemplary application scenarios employing ADataViewer
While there are multiple scenarios in which ADa-
taViewer can support AD research, we focus on two 
scenarios below. Another application scenario not 
explained here, however, one that would follow similar 
routes as the ones outlined below, would be the writing 
of grant applications and identifying datasets to include 
into the proposal.

Scenario 1
A researcher is searching for a discovery and validation 
cohort to model cognitive decline in the light of hip-
pocampus atrophy, amyloid PET, and depression. The 
variables of interest are the Mini-Mental State Examina-
tion (MMSE), Clinical Dementia Rating Sum of Boxes 
(CDRSB), hippocampus volume, Amyvid Positron Emis-
sion Tomography (AV PET), Geriatric Depression Scale 

Table 2 Number of mapped unique variables per cohort and modality

Dataset Demographics Clinical MRI PET CSF Plasma Comorbidities Family Lifestyle

A4 13 5 44 1 0 0 2 6 4

ABVIB 12 0 0 0 0 0 0 0 0

ADNI 17 23 247 3 10 11 14 8 5

AIBL 15 16 3 2 3 0 12 2 5

ANMerge 14 11 136 0 0 0 1 3 1

ARWIBO 21 14 1026 21 3 6 13 3 2

DOD‑ADNI 21 20 249 1 3 0 18 6 6

EDSD 12 8 1026 8 3 2 4 2 0

EMIF‑1000 8 4 3 1 6 0 3 0 4

EPAD V.IMI 14 11 80 0 3 0 17 5 4

I‑ADNI 15 10 1026 8 3 1 1 2 0

JADNI 15 21 871 2 3 0 14 6 4

NACC 20 17 123 2 3 0 14 3 6

OASIS 16 3 1026 8 3 2 0 2 0

PREVENT‑AD 15 4 0 0 7 0 5 5 0

PharmaCog 13 16 1026 8 3 2 0 2 0

ROSMAP 12 9 0 0 0 0 8 0 1

VASCULAR 9 8 31 0 0 0 3 0 2

VITA 12 3 1026 8 3 2 0 2 0

WMH‑AD 12 4 1025 8 3 2 0 2 0

Total unique terms 23 34 1050 24 14 15 20 9 7

Fig. 2 Exemplary longitudinal plot of MMSE assessments generated using ADataViewer. Displayed are cohorts and their respective number of 
assessed participants for the selected variable
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(GDS), and variables to correct for possible confound-
ing (age, biological sex, education, and APOE ε4 allele 
presence).

Given such a set of variables of interest, the StudyP-
icker of ADataViewer is the appropriate starting point to 
identify relevant cohorts. After submitting the variable 
query, we can directly observe that NACC, A4, ADNI, 
and DOD-ADNI contain all specified variables of interest 
(Fig. 4A). However, after inspecting the follow-up plots, 
it is revealed that only NACC and ADNI hold sufficient 
longitudinal data to detect time-dependent relationships 
(here, 463 and 557 patients over 24 months of study runt-
ime, respectively) (Fig. 4B and Fig. S1). Besides these two 
cohorts, EPAD, including 1845 participants, could also 
provide a rich basis for the planned analysis if AV PET 
would be omitted (Fig. 4A).

For a final evaluation on whether NACC and ADNI 
would suit the study needs, the “Biomarkers” section can 
be used to compare cohort demographics and variable 
distributions. For example, comparing the age of partic-
ipants in NACC and ADNI reveals a higher variance in 
the NACC data and the presence of younger participants 
who would have been excluded from the ADNI study 
(Fig.  4C). Furthermore, investigating the hippocampal 

volumes exposes a difference in value representation 
between the cohorts, as NACC values have been reported 
as normalized values (Fig. S2). Consequently, it could be 
concluded that both datasets could be viable options for 
the discovery and replication process of a data-driven 
study, given that the representations of the hippocam-
pal volume can be unified. Finally, the application pro-
cess for data access can be initiated directly through the 
StudyPicker.

Scenario 2
A consortium is planning to conduct a longitudinal 
cohort study that aims at investigating AD in previously 
underrepresented ethnoracial groups. The assessed vari-
ables, however, should be compatible with other land-
mark AD cohorts to allow for a comparison of achieved 
results.

First, the ethnoracial diversity encountered across pre-
vious AD cohorts can be explored in the “Ethnicity” sec-
tion of ADataViewer. Their investigation demonstrates 
that 19 of the 20 cohorts enrolled predominantly cau-
casian/white participants. Keeping our proposed study 
goals in mind, it would therefore make sense to exclude 
caucasian/white participants from the recruitment of the 

Fig. 3 Assessment frequency of exemplary variables across cohorts. Interactive figure displaying the number of studies in which each specific 
variable was encountered (https:// adata. scai. fraun hofer. de/ bioma rkers)

Fig. 4 Using ADataViewer to identify suitable cohort datasets in a use case scenario. Selection of this case scenario was with the aim to evaluate 
cognitive decline in the light of depression, AV PET, and hippocampal atrophy. All graphs were created using the tools of ADataViewer. A Excerpt 
of the ranking received by entering the variables of interest specified in application scenario 1 into the StudyPicker. B Longitudinal coverage of the 
specified variables in the NACC cohort. See Fig. S1 for the other cohorts’ plots. C Comparison of the age distributions encountered across diagnostic 
groups of ADNI and NACC 

(See figure on next page.)

https://adata.scai.fraunhofer.de/biomarkers
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Fig. 4 (See legend on previous page.)
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envisioned study to focus on the currently underrepre-
sented groups.

To achieve high compatibility with previous AD stud-
ies, the planned study should align its follow-up inter-
vals and the assessed variables/data modalities to them. 
Here, the data modality map indicates that we should 
include demographics, clinical assessments, MRI, cer-
ebrospinal fluid (CSF) biomarkers, at least APOE geno-
typing, administered medication, comorbidities, and 
the family history of participants to achieve a strong 
overlap in data modalities (Fig. S3). More specifically, 
the most prominently assessed variables per modality 
can be explored in the “Biomarkers” section (Fig. 3). For 
example, we can observe that Clinical Dementia Rat-
ing (CDR) and MMSE are the most conducted cogni-
tive assessments; demographics most commonly cover 
the biological sex, age, years of education, and ethno-
racial group of participants; and phosphorylated tau, 
total tau, and beta-amyloid were abundantly measured 
as CSF markers. By leveraging this information, we can 
make an informed decision on the variables we want to 
measure in the envisioned cohort study, such that an 
exploration of AD progression is feasible and that pos-
sible differences to cohorts of other ethnoracial com-
positions can be systematically evaluated. Additionally, 
the value ranges commonly encountered per variable 
can be explored using the biomarker boxplots (Fig. 4C). 
Once the cohort study was conducted, we can use the 
provided variable mapping catalog to harmonize the 
new cohort dataset to all 20 datasets currently present 
in ADataViewer.

Discussion
ADataViewer aims at advancing patient data-driven AD 
research by increasing the findability and interoperability 
of cohort datasets and providing a deeper understanding 
of their content, both from a semantic and statistical per-
spective. The platform supports the variable-level explo-
ration of 20 AD cohort datasets and enables researchers 
to identify datasets suited for their envisioned studies 
before spending time on data access applications. In this 
context, we created, to the best of our knowledge, the 
most comprehensive variable mapping catalog in the AD 
domain that semantically harmonizes 1196 unique vari-
ables across all investigated cohorts.

Aspiring to contribute to a FAIR data paradigm 
(findable, accessible, interoperable, reusable) in AD 
research [37], ADataViewer increases the findability 
of AD cohort datasets by displaying and suggesting 
possible data resources to researchers, enables bet-
ter accessibility through direct links to the respective 
data access points, provides the variable mapping cata-
log to establish data interoperability, and facilitates 

the reuse of data for validation purposes. We believe 
that the presented platform can elevate data-driven 
AD research to be faster and more robust, because it 
becomes significantly easier to access the right data-
sets and validate results across multiple independent 
cohorts. In turn, this will help to better understand 
the heterogeneity across AD patients [38] and help to 
reveal possible cohort-specific findings [10].

Collecting patient-level data is a vastly expensive 
process. Therefore, studies are often limited concern-
ing their sample size, follow-up time, and variety of 
assessed data modalities. ADataViewer transparently 
provides researchers with information about what they 
can expect from specific datasets and whether it makes 
sense for them to spend a substantial amount of time on 
the acquisition of the individual data resource. Limit-
ing the time spent on unfruitful dataset acquisitions will 
accelerate and benefit the actual analysis of the data. On 
this note, we would like to emphasize that ADataViewer 
is not meant to promote only the largest, most complete 
cohorts, but to show all available datasets that contain 
the information of interest for a conceived project. While 
larger cohorts often fare better as discovery cohorts, any 
cohort with equivalent information, regardless of the 
size, could present a valuable resource for the subsequent 
validation of results and should therefore be considered.

Given the restrictions of sensible personal data, there 
are multiple initiatives testing and establishing federated 
learning concepts that aim to facilitate secure remote 
access to multiple sensible datasets [39]. These concepts 
rely on interoperable data and our mappings and data 
descriptions could provide a starting point to establish 
such comprehensive interoperability by extending them 
into a complete data model following, for example, the 
OMOP or FHIR standard.

We plan to update ADataViewer as well as its under-
lying information (e.g., the mappings) whenever we get 
access to new datasets. However, an automatic periodic 
updating is infeasible, as the data is usually not shared via 
programmatic interfaces but through personal contacts 
and access-restricted data portals.

Limitations
One strength and simultaneous limitation of this work 
was its overarching premise that the data investigation 
was not based purely on descriptive metadata but on the 
dataset that was factually shared with us. Therefore, all 
results are based on the status of the distributed data and 
could vary from the content mentioned in official study 
reports or other versions of the same dataset. Ultimately, 
however, what drives the advancement of AD research is 
the factually shared, analyzable data and not what could 
potentially be available in theory.
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The decision on how strict equivalence of variables 
is defined inevitably remains arbitrary to some degree. 
Here, we define two variables as semantically equiva-
lent if the same information is presented in principle 
(i.e., the content of both variables can at least be bro-
ken down into the same information, see Supplemen-
tary Material for examples). Therefore, the acquisition 
method (e.g., type of MRI scanner) between two vari-
ables that were declared to be semantically equivalent 
may still differ and subsequent pre-processing of the 
raw data might be necessary to account for result-
ing statistical differences (e.g., elimination of batch 
effects). Sharing statistically harmonized data via 
ADataViewer is infeasible due to legal data sharing 
restrictions. However, the presented semantic map-
ping catalog presents a starting point to directly iden-
tify equivalent variables of interest and initiate the 
following pre-processing steps.

Conclusion
With ADataViewer, we aim to contribute to a robust, 
data-driven research culture that carefully reproduces 
and validates scientific results across multiple compa-
rable datasets. As such, instead of pointing towards a 
single data resource, ADataViewer transparently dis-
plays the content of all integrated AD cohort datasets 
and the StudyPicker proposes all of these resources 
that match the researcher’s requirements. Our pro-
vided variable mappings build the basis for in-depth 
dataset comparisons and can act as a starting point to 
select and harmonize suited discovery and validation 
datasets.
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